
Week 15 - Friday

 What did we talk about last time?
 Student questions
 Review up to Exam 2

 Edges
 Nodes
 Types
 Undirected
 Directed
 Multigraphs
 Weighted
 Colored
 Triangle inequality

 Depth First Search
 Cycle detection
 Connectivity

 Breadth First Search

 Start with two sets, S and V:
 S has the starting node in it
 V has everything else

1. Set the distance to all nodes in V to ∞
2. Find the node u in V with the smallest d(u)
3. For every neighbor v of u in V

a) If d(v) > d(u) + d(u,v)
b) Set d(v) = d(u) + d(u,v)

4. Move u from V to S
5. If V is not empty, go back to Step 2

 Start with two sets, S and V:
 S has the starting node in it
 V has everything else

1. Find the node u in V that is closest to any node in S
2. Put the edge to u into the MST
3. Move u from V to S
4. If V is not empty, go back to Step 1

 An Euler path visits all edges exactly once
 An Euler tour is an Euler path that starts and ends on the same

node
 If a graph only has an Euler path, exactly 2 nodes have odd

degree
 If a graph has an Euler tour, all nodes have even degree
 Otherwise, the graph has no Euler tour or path

 A bipartite graph is one whose nodes can be divided into two
disjoint sets X and Y

 There can be edges between set X and set Y
 There are no edges inside set X or set Y
 A graph is bipartite if and only if it contains no odd cycles
 If you want to show a graph is bipartite, divide it into two

sets
 If you want to show a graph is not bipartite, show an odd

cycle

 A perfect matching is when every node in set X and every
node in set Y is matched

 It is not always possible to have a perfect matching
 We can still try to find a maximum matching in which as

many nodes are matched up as possible

1. Come up with a legal, maximal matching
2. Take an augmenting path that starts at an unmatched node

in X and ends at an unmatched node in Y
3. If there is such a path, switch all the edges along the path

from being in the matching to being out and vice versa
4. If there is another augmenting path, go back to Step 2

 A tour that visits every node exactly once is called a
Hamiltonian tour

 Finding the shortest Hamiltonian tour is called the Traveling
Salesman Problem

 Both problems are NP-complete (well, actually NP-hard)
 NP-complete problems are believed to have no polynomial

time algorithm

 For a tree in secondary storage
 Each read of a block from disk storage is slow
 We want to get a whole node at once
 Each node will give us information about lots of child nodes
 We don't have to make many decisions to get to the node we want

 A B-tree of order m has the following properties:
1. The root has at least two subtrees unless it is a leaf
2. Each nonroot and each nonleaf node holds k keys and k + 1 pointers

to subtrees where m/2 ≤ k ≤ m
3. Each leaf node holds k keys where m/2 ≤ k ≤ m
4. All leaves are on the same level

50

10 15 20 70 80

6 8 11 12 16 18 21 25 27 29

54 56 71 76 81 89

 Go down the leaf where the value should go
 If the node is full
 Break it into two half full nodes
 Put the median value in the parent
 If the parent is full, break it in half, etc.

 Otherwise, insert it where it goes
 Deletes are the opposite process
 When a node goes below half full, merge it with its neighbor

 B*-tree
 Shares values between two neighboring leaves until they are both

full
 Then, splits two nodes into three
 Maintains better space utilization

 B+-tree
 Keeps (copies of) all keys in the leaves
 Has a linked list that joins all leaves together for fast sequential

access

 A common flow problem on flow networks is to find the
maximum flow

 A maximum flow is a non-negative amount of flow on each
edge such that:
 The maximum amount of flow gets from s to t
 No edge has more flow than its capacity
 The flow going into every node (except s and t) is equal to the flow

going out

 When we were talking about matching, we mentioned
augmenting paths

 Augmenting paths in flows are a little different
 A flow augmenting path:
 Starts at s and ends at t
 May cross some edges in the direction of the edge (forward edges)
 May cross some edges in the opposite direction (backwards edges)
 Increases the flow by the minimum of the unused capacity in the

forward edges or the maximum of the flow in the backwards edges

 We do n rounds
 For round i, assume that the elements 0 through i – 1 are sorted
 Take element i and move it up the list of already sorted elements

until you find the spot where it fits
 O(n2) in the worst case
 O(n) in the best case
 Adaptive and the fastest way to sort 10 numbers or fewer

 Take a list of numbers, and divide it in half, then, recursively:
 Merge sort each half
 After each half has been sorted, merge them together in order

 O(n log n) best and worst case time
 Not in-place

 Make the array have the heap property:
1. Let i be the index of the parent of the last two nodes
2. Bubble the value at index i down if needed
3. Decrement i
4. If i is not less than zero, go to Step 2

1. Let pos be the index of the last element in the array
2. Swap index 0 with index pos
3. Bubble down index 0
4. Decrement pos
5. If pos is greater than zero, go to Step 2

 O(n log n) best and worst case time
 In-place

1. Pick a pivot
2. Partition the array into a left half smaller than the pivot and a

right half bigger than the pivot
3. Recursively, quicksort the left part (items smaller than the pivot)
4. Recursively quicksort the right part (items larger than the pivot

 O(n2) worst case time but O(n log n) best case and average case
 In-place

 Make an array with enough elements to hold every possible
value in your range of values
 If you need 1 – 100, make an array with length 100

 Sweep through your original list of numbers, when you see a
particular value, increment the corresponding index in the
value array

 To get your final sorted list, sweep through your value array
and, for every entry with value k > 0, print its index k times

 Runs in O(n + |Values|) time

 We can "generalize" counting sort somewhat
 Instead of looking at the value as a whole, we can look at

individual digits (or even individual characters)
 For decimal numbers, we would only need 10 buckets (0 – 9)
 First, we bucket everything based on the least significant

digits, then the second least, etc.
 Runs in O(nk) time, where k is the number of digits we have to

examine

 A maximum heap is a complete binary tree where

 The left and right children of the root have key values less than the
root

 The left and right subtrees are also maximum heaps

10

9 3

0 1

 Always in the first open spot on the bottom level of the tree,
moving from left to right

 If the bottom level of the tree is full, start a new level

 The next open
spot is left of 3

10

9 3

0 1

 Oh no! 10

9 3

0 1 15

10

9 3

0 1 15

10

9 15

0 1 3

15

9 10

0 1 3

10

9 3

0 1

9 3

0 1

9 3

0

1

9 3

0

1

1 3

0

9

 Heaps only have:
 Add
 Remove Largest
 Get Largest

 Which cost:
 Add: O(log n)
 Remove Largest: O(log n)
 Get Largest: O(1)

 Heaps are a perfect data structure for a priority queue

 We can implement a heap with a (dynamic) array

 The left child of element i is at 2i + 1
 The right child of element i is at 2i + 2

10

9 3

0 1

10 9 3 0 1

0 1 2 3 4

 We can use a (non-binary) tree to record strings implicitly where
each link corresponds to the next letter in the string

 Let's store:
 10
 102
 103
 10224
 305
 305678
 09

 There is no next time!

 Fill out course evaluations!
 Finish Project 4
 Due tonight!

 Study for final exam
 Friday, 12/13/2024 from 10:15 a.m. - 12:15 p.m.

	COMP 2100
	Last time
	Questions?
	Project 4
	Student Questions
	Graphs
	Graphs
	Traversals
	Dijkstra's Algorithm
	Minimum Spanning Tree (MST)
	Euler paths and tours
	Bipartite graphs
	Maximum matching
	Matching algorithm
	NP-completeness
	B-trees
	Why B-trees?
	B-tree definition
	B-tree of order 4
	B-tree operations
	Variations
	Maximum flow
	Augmenting path
	Sorting
	Insertion sort
	Merge sort algorithm
	Heap sort
	Quicksort
	Counting sort
	Radix sort
	Heaps
	Heaps
	Heap example
	How do you know where to add?
	New node
	Add 15
	After an add, bubble up
	Only the root can be deleted
	Replace it with the “last” node
	Then, bubble down
	Operations
	Array view
	Tries
	Storing strings (of anything)
	Upcoming
	Next time…
	Reminders

