
Week 15 - Friday



 What did we talk about last time?
 Student questions
 Review up to Exam 2











 Edges
 Nodes
 Types
 Undirected
 Directed
 Multigraphs
 Weighted
 Colored
 Triangle inequality



 Depth First Search
 Cycle detection
 Connectivity

 Breadth First Search



 Start with two sets, S and V:
 S has the starting node in it
 V has everything else

1. Set the distance to all nodes in V to ∞
2. Find the node u in V with the smallest d(u)
3. For every neighbor v of u in V

a) If d(v) > d(u) + d(u,v)
b) Set d(v) = d(u) + d(u,v)

4. Move u from V to S
5. If V is not empty, go back to Step 2



 Start with two sets, S and V:
 S has the starting node in it
 V has everything else

1. Find the node u in V that is closest to any node in S
2. Put the edge to u into the MST
3. Move u from V to S
4. If V is not empty, go back to Step 1



 An Euler path visits all edges exactly once
 An Euler tour is an Euler path that starts and ends on the same 

node
 If a graph only has an Euler path, exactly 2 nodes have odd 

degree
 If a graph has an Euler tour, all nodes have even degree
 Otherwise, the graph has no Euler tour or path



 A bipartite graph is one whose nodes can be divided into two 
disjoint sets X and Y

 There can be edges between set X and set Y
 There are no edges inside set X or set Y
 A graph is bipartite if and only if it contains no odd cycles
 If you want to show a graph is bipartite, divide it into two 

sets
 If you want to show a graph is not bipartite, show an odd 

cycle



 A perfect matching is when every node in set X and every 
node in set Y is matched

 It is not always possible to have a perfect matching
 We can still try to find a maximum matching in which as 

many nodes are matched up as possible



1. Come up with a legal, maximal matching
2. Take an augmenting path that starts at an unmatched node 

in X and ends at an unmatched node in Y
3. If there is such a path, switch all the edges along the path 

from being in the matching to being out and vice versa
4. If there is another augmenting path, go back to Step 2



 A tour that visits every node exactly once is called a 
Hamiltonian tour

 Finding the shortest Hamiltonian tour is called the Traveling 
Salesman Problem

 Both problems are NP-complete (well, actually NP-hard)
 NP-complete problems are believed to have no polynomial 

time algorithm





 For a tree in secondary storage
 Each read of a block from disk storage is slow
 We want to get a whole node at once
 Each node will give us information about lots of child nodes
 We don't have to make many decisions to get to the node we want



 A B-tree of order m has the following properties:
1. The root has at least two subtrees unless it is a leaf
2. Each nonroot and each nonleaf node holds k keys and k + 1 pointers 

to subtrees where m/2 ≤ k ≤ m
3. Each leaf node holds k keys where m/2 ≤ k ≤ m
4. All leaves are on the same level
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 Go down the leaf where the value should go
 If the node is full
 Break it into two half full nodes
 Put the median value in the parent
 If the parent is full, break it in half, etc.

 Otherwise, insert it where it goes
 Deletes are the opposite process
 When a node goes below half full, merge it with its neighbor



 B*-tree
 Shares values between two neighboring leaves until they are both 

full
 Then, splits two nodes into three
 Maintains better space utilization

 B+-tree
 Keeps (copies of) all keys in the leaves
 Has a linked list that joins all leaves together for fast sequential 

access



 A common flow problem on flow networks is to find the 
maximum flow

 A maximum flow is a non-negative amount of flow on each 
edge such that:
 The maximum amount of flow gets from s to t
 No edge has more flow than its capacity
 The flow going into every node (except s and t) is equal to the flow 

going out



 When we were talking about matching, we mentioned 
augmenting paths

 Augmenting paths in flows are a little different
 A flow augmenting path:
 Starts at s and ends at t
 May cross some edges in the direction of the edge (forward edges)
 May cross some edges in the opposite direction (backwards edges)
 Increases the flow by the minimum of the unused capacity in the 

forward edges or the maximum of the flow in the backwards edges





 We do n rounds
 For round i, assume that the elements 0 through i – 1 are sorted
 Take element i and move it up the list of already sorted elements 

until you find the spot where it fits
 O(n2) in the worst case
 O(n) in the best case
 Adaptive and the fastest way to sort 10 numbers or fewer



 Take a list of numbers, and divide it in half, then, recursively:
 Merge sort each half
 After each half has been sorted, merge them together in order

 O(n log n) best and worst case time
 Not in-place



 Make the array have the heap property:
1. Let i be the index of the parent of the last two nodes
2. Bubble the value at index i down if needed
3. Decrement i
4. If i is not less than zero, go to Step 2

1. Let pos be the index of the last element in the array
2. Swap index 0 with index pos
3. Bubble down index 0
4. Decrement pos
5. If pos is greater than zero, go to Step 2

 O(n log n) best and worst case time
 In-place



1. Pick a pivot
2. Partition the array into a left half smaller than the pivot and a 

right half bigger than the pivot
3. Recursively, quicksort the left part (items smaller than the pivot)
4. Recursively quicksort the right part (items larger than the pivot

 O(n2) worst case time but O(n log n) best case and average case
 In-place



 Make an array with enough elements to hold every possible 
value in your range of values
 If you need 1 – 100, make an array with length 100

 Sweep through your original list of numbers, when you see a 
particular value, increment the corresponding index in the 
value array

 To get your final sorted list, sweep through your value array 
and, for every entry with value k > 0, print its index k times

 Runs in O(n + |Values|) time



 We can "generalize" counting sort somewhat
 Instead of looking at the value as a whole, we can look at 

individual digits (or even individual characters)
 For decimal numbers, we would only need 10 buckets (0 – 9)
 First, we bucket everything based on the least significant 

digits, then the second least, etc.
 Runs in O(nk) time, where k is the number of digits we have to 

examine





 A maximum heap is a complete binary tree where

 The left and right children of the root have key values less than the 
root

 The left and right subtrees are also maximum heaps
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 Always in the first open spot on the bottom level of the tree, 
moving from left to right

 If the bottom level of the tree is full, start a new level



 The next open 
spot is left of 3

10

9 3

0 1



 Oh no! 10

9 3

0 1 15
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 Heaps only have:
 Add
 Remove Largest
 Get Largest

 Which cost:
 Add: O(log n)
 Remove Largest: O(log n)
 Get Largest: O(1)

 Heaps are a perfect data structure for a priority queue



 We can implement a heap with a (dynamic) array

 The left child of element i is at 2i + 1
 The right child of element i is at 2i + 2

10

9 3

0 1

10 9 3 0 1

0 1 2 3 4





 We can use a (non-binary) tree to record strings implicitly where 
each link corresponds to the next letter in the string

 Let's store:
 10
 102
 103
 10224
 305
 305678
 09





 There is no next time!



 Fill out course evaluations!
 Finish Project 4
 Due tonight!

 Study for final exam
 Friday, 12/13/2024 from 10:15 a.m. - 12:15 p.m.
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